
QED on background Coulomb field

Jaroslav Zamastil

Department of Chemical Physics and Optics

Charles University in Prague

May 2017

Jaroslav Zamastil QED on background Coulomb field



Plan of the talk

Motivation for study bound-state QED

Solution of Dirac equation for external Coulomb field

Evaluation of the self-energy effect

Jaroslav Zamastil QED on background Coulomb field



Plan of the talk

Evaluation of the vacuum polarization effect

Jaroslav Zamastil QED on background Coulomb field



Motivation for study of bound-state QED

Practical - determination of nuclear properties (proton radius,
etc.)

Conceptual -

QFT is the theory of almost everything
Study of perturbative aspects have been bringing continual
surprises, even in the last few years (helicity spinors, twistors,
unitary method, finitness of the first four orders of N = 8
supergravity, etc.)
Study of non-perturbative aspects still in infancy, but for
example Higgs boson is very likely associated with them, not
to say about quark confinement, etc.
Bound-state QED is the simplest, and yet very useful, example
of non-perturbative problem
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Solution of Dirac equation for external Coulomb field

The Dirac equation:
(γ.Π−m)ψ = 0

By multiplying the Dirac equation by γ.Π + m we get

Hψ = 0 , H = Π.Π−m2 +
1

4
[Πµ,Πν ][γµ, γν ].

For Coulomb external field Π =
(
E + Zα

r , ~p
)

and after scaling
r → r

EZα

Hl = E 2 −m2 − 2(EZα)2

[
1

2

(
p2
r +

l(l + 1)

r2

)
− 1

r

]
.

where l(l + 1) is an eigenvalue of the operator
L2 − i(Zα)γ0~γ.~n − (Zα)2,

l =
√

(j + 1/2)2 − (Zα)2 − δρ,1 , ρ = ±1
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Advantages of the second-order Dirac Hamiltonian

Spectral decomposition of f (Hl) is of the form

f (Hl) =
∑
n

f (En)|n, l >< n, l |+
∫ ∞

0
dke f (Eke )|ke , l >< ke , l |

Eke = (mZα)2[1 + k2
e ] .

Radial and spinor-angular degrees of freedom are separated

Radial functions are of those of non-relativistic form

Matrix elements of the bound-bound and bound-continuum
transitions (those needed for self-energy calculation) possible
to express in closed, compact form through hypergeometric
functions

The same holds for some of the continuum-continuum
transitions (those needed for vacuum polarization calculation)
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Self-energy – Practical Importance

The different proton radii rp = 0.8768fm and rp = 0.84184fm
shift 2s-1s transitions in hydrogen by 1.052 MHz and 0.96977
MHz, respectively.

The uncertainty in determination of proton charge radius
amounts to 82kHz for 2s-1s transition

One-loop self-energy shifts the transition by about 7.3GHz

It has to be determined with precision significantly better than
1 part in 105 in order to exclude the possibility that the
proton charge radius is influenced by error in determination of
the self-energy

Error of perturbative calculation, Zα expansion, (Pachucki
1990) amounts to 24kHz

Non-perturbative (in Zα) treatment necessary even for
hydrogen.
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Self-energy – (Very) Short History

Zα-expansion

∆E =
mα(Zα)4

πn3s3
F (Zα, n, lj) , s = 1 +

m

mn

where

F (Zα, n, lj) = A41 ln s(Zα)−2 + A40 + A50(Zα)+

+(Zα)2
[
A62 ln2 s(Zα)−2 + A61 ln s(Zα)−2 + A60

]
+ . . .

Weiskopf,Bethe,Schwinger,Feynman,Yennie,Pachucki, etc.
The Zα expansion is restricted to low Z only and gives sufficiently
accurate results for the non-S-states and the normalised difference
of the S-states

n3∆En −∆E1

but not for the ground state ∆E1.
1-D integrals numerically
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Self-energy – (Very) Short History

Partial wave expansion

∆E = 〈O −∆m〉

where mass operator O is written as

〈O〉 = −α
π

∫ Λ2

0
dλ

∫
idk0

(2π)2

∫
d3k

(k2
0 − ω2 − λ)2∫

d3~r1d
3~r2ψ

+(~r1)γ0γµe
i~k.~r1G (−k0 + E , ~r1, ~r2)e−i

~k.~r2γ0γµψ(~r2)

and G (z , ~r1, ~r2) is the Green function of the first-order Dirac
Hamilton operator.
The plane waves and the Green function expanded in the partial
waves
Mohr, Jentschura, etc.
Works well for large Z and the low lying states
3-D integrals numerically
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Self-energy - source of difficulties

Existence of several different scales

The self-energy represents an 11-D integral; at least one
integration has to be done numerically in any method.

The low-energy photon region ω ∼ m(Zα)2 gives the
dominant contribution (Bethe non-relativistic estimate)

The high-energy photon region ω ∼ m necessary to get
renormalization of electron mass correctly

The low-energy electron region ke ∼ 1 contributes to the
dominant part of the effect

The high-energy electron region ke ∼ (Zα)−1 yields the
subdominant contribution (Zα-correction)
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Relativistic generalisation of multipole expansion

In our method the renormalized expression for the self-energy

∆E = 〈O −∆m〉 =< ψ|γ0(O −∆m)|ψ >,

with regularized mass operator O defined as

O =
α

π

∫ Λ2

0
dλ

∫
d4kF

(k2 − λ)2
γµ

1

γ.(Π− k)−m
γµ,

is rewritten into second-order form

〈O〉 = − α

2π

〈
γµ

(
G4Πµ −

m

2
G .γγµ

)〉
with

G4,ν = (−4)

∫ Λ2

0
dλ

∫
d4kF

(k2 − λ)2

(1, kν/m)

k2 − 2k .Π + H
.
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Relativistic generalisation of multipole expansion

The key idea of our method is that the electron propagator can be
expanded in powers of difference of the electron four-momentum Π
and the four-momentum of the electron at rest ε = (m,~0)

1

k2 − 2k .Π + H
=

1

k2 − 2k .ε+ H
+

+
1

k2 − 2k .ε+ H
2k .(Π− ε)

1

k2 − 2k.ε+ H
+

+
1

k2 − 2k.ε+ H
2k .(Π−ε)

1

k2 − 2k .ε+ H
2k.(Π−ε)

1

k2 − 2k .ε+ H
+. . . .
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Relativistic generalisation of multipole expansion

Motivation:

To get correctly Bethe non-relativistic estimate, the
second-order hamiltonian H has to be kept at the leading
approximation to the propagator.
The greatest overlap between the reference and the virtual
states lies in the region of energies close to the ionisation
threshold. The momentum of virtual electron in this region,
p ∼ mZα⇔ ke ∼ 1, is small compared to the rest mass m.

Advantages:

After renormalization of electron mass is performed all the
integrals over both the photon and electron variables are
automatically finite both at infrared and ultraviolet.
Except for the integration over the hydrogen continuous
spectrum everything is done analytically, yet
non-perturbatively in Zα.
Individual terms of the expansion can be generated
automatically using symbolic computer languages.
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Relativistic generalisation of multipole expansion

In the case of non-S-states and the normalised difference of the
S-states n3∆En −∆E1 the contribution from the high-energy
virtual electron region is suppressed and the RME converges rather
fast. Just four terms in the expansion are enough to obtain results
that surpass accuracy of the experiment and any other method.
Result for 23∆E2 −∆E1:

Term Z = 1 Z = 5

F1 + F2 0.229991606931 0.232342252851
F3 0.000039870858 0.000884923162
F4 6.241492×10−8 6.131626×10−6

Total 0.2300315402(3) 0.23323331(3)

V. Patkóš and J. Zamastil, Phys. Rev. A 91, 062511 (2015).
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The RME method is based on the assumption that the
difference Π− ε is small. This assumption holds with the
exception for the region of high ke & (Zα)−1.

In order to get accurate results the high energy virtual
electron region needs separate treatment.

The contribution from the high-energy electron region is
contained in RME in the form of slowly converging series.

Fortunately, the most important part, of the order α(Zα)5,
can be isolated by taking limit of small Zα and high ke

A
(v)
50 = −23 Γ

(
1
2

)
Γ
(
v − 5

2

) (
16v4 − 32v3 + 296v2 + 8v − 267

)
πΓ(v)(2v + 5)(2v + 3)(2v + 1)2(2v − 3)

.

For large v this behaves as A
(v)
50 ' v−7/2.
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The accuracy of RME can then be improved by subtracting

A
(v)
50 and adding the whole A50:

F (Zα) = (Zα)A50 +
∞∑
v=1

Sv , Sv = Fv − (Zα)A
(v)
50 .

Here, the total contribution of the order α(Zα)5 is

A50 =
∞∑
v=1

A
(v)
50 = 4π

(
139

128
− ln 2

2

)
This significantly improves accuracy for Z < 20.
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Results - ground state of hydrogen

lead 10.315870916

S3 0.891183 10−3

S4 0.23509 10−4

S5 0.4484 10−5

S6 0.1554 10−5

S7 0.719 10−6

S8 0.388 10−6

S9 0.237 10−6

sum 10.316792992
small 0.684(7) 10−6

total 10.316793675(7)

PWE 10.316793650(1)

J. Zamastil, V. Patkóš, Phys. Rev. A 88, 032501 (2013)

PWE – U. D. Jentschura et al., Phys. Rev. A 63, 042512
(2001), extrapolation of several millions of 3-D integrals
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Results - ground state of hydrogen-like ions

The relative difference 2 parts in 109 corresponds to 18Hz for
2s − 1s transition in hydrogen.
Higher nuclear charges:

Z RME PWE

5 6.2516278 6.251627078
10 4.654156 4.6541622
20 3.24618 3.2462556
30 2.5525 2.5520151
40 2.1359 2.1352284
50 1.8646 1.8642743

PWE results for Z ≥ 10 are from P.J. Mohr, Phys. Rev. A 46,
4421 (1992).
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Role of Relativistic Effects

Generic integral encoutered in RME:

m
α(Zα)6

π
C0

∫ 1

0
dwf (w)× (1)

×
∫ 1

0
dyyu

∫ ∞
0

dke
k−2l0
e

y + a(1 + k2
e )

(
1 +

C1ke
1 + k2

e

+ . . .

)
,

u ≥ 0 depends on the order of RME
C0 and C1 are some complicated functions of quantum numbers of
intermediate states, pertinent order of RME, etc.
a = w(Zα)2

f (w) is some polynomial function of w
l0 =

√
1− (Zα)2 − 1 enters into Eq. (1) through the overlap

integrals between the Dirac ground state wave function of
hydrogen ψ1s ∼ exp{−r/(l0 + 1)} r l0 and the wave functions of the
hydrogen intermediate states.
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Role of Relativistic Effects

∆E = m
α

π
(Zα)4F (Zα) ,

F (Zα) = A41 ln(Zα)−2 + A40 + A50(Zα)+

+(Zα)2
[
A62 ln2(Zα)−2 + A61 ln(Zα)−2 + G (Zα)

]
G (Zα) = A60 + (Zα)

[
ln(Zα)−2A71 + A70

]
+

+(Zα)2
[
ln3(Zα)−2A83 + ln2(Zα)−2A82 + ln(Zα)−2A81 + A80

]
+

+(Zα)3
[
ln2(Zα)−2A92 + ln(Zα)−2A91 + A90

]
+ . . . .

A71

A50
=

1

2
,
A92

A50
=

1

8
,
A11,3

A50
=

1

48
, . . .

A83

A62
=

1

6
,
A10,4

A62
=

1

48
, . . .
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Role of Relativistic Effects

The first relation appears in S. G. Karshenboim, Z. Phys. D 39,
109 (1997)
the others in V. Patkóš, D. Šimsa, and J. Zamastil, Phys. Rev. A
95, 012507 (2017)
NRQED approach (originally proposed by Caswell and Lepage,
developed into powerfull method by Pachucki and coworkers)

H = mα2(H0 + α2H(4) + α3H(5) + α4H(6) + α5H(7) + . . .)

has to eventually breaks down: for α ln3(α)−2 ' 6.95 > 1. Whence
it does not appear meaningful to construct H(8) and completely
neglect H(9).
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Future developments

Relativistic multipole expansion – to determine the portion of
A60 coefficient contained at given order of RME
Partial wave expansion – by means of the second order
Hamiltonian

integrals reduced to 2D integrals
the mass renormalization can be done exactly
A40, A41 coefficients included exactly
determine the portion of A50 coefficient at given order of PWE

Two loops
SEVP graphs – preliminary calculation for muonic hydrogen
V. Patkóš, D. Šimsa, and J. Zamastil, Phys. Rev. A 95,
012507 (2017)
∆E (2p 1

2
)−∆E (2s) ' −2.706× 10−6 eV

which differs by 8% from the result −2.5× 10−6 eV,
U. D. Jentschura, Ann. Phys. 326, 500 (2011).
Double SE graphs – Still lot of work ahead
the greatest problem with general continuum–continuum
transition
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Vacuum polarization

Assuming non-relativistic approximation of the bound-state
function the energy shift can be expressed through Laplace
transform of the vacuum charge density

∆E = mr

(mr

m

)2 (Zα)3

4π

(
− d

db

)[
b−2

∫ b

0
db′q(b′)

]∣∣∣∣
b=mr

m
Zα

q(b) =

∫
d3~r exp{−2mbr}e〈ρ(~r)〉

〈ρ(~r)〉 = e

∫
C

dE

2πi
〈~r |Tr

1

E − V̂ − γ0~γ · ~̂p − γ0m
|~r〉 =

= e

∫
C

dE

2πi
〈~r |Tr(E − V̂ − γ0~γ · ~̂p + γ0m)

1

H
|~r〉,
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Vacuum polarization

q(b) = −4α
∞∑
k=1

∑
ρ=±1

k

∫ ∞
0

dp

∫ 1

0

dt

t(1− t)
×

×
{(
− ∂

∂b

)
b

2
sinh{a(pb)A(p)}+

+Zα

(
1 +

b

2Γ

∂

∂b

)
b cosh{a(pb)A(p)}√

(bp)2 + 1

}
s l+1 ,

where

l =
√
k2 − (Zα)2 − δρ,1

a(pb) =

√
(bp)2 + 1

bp
Zα, A(p) = π−2 arctan (p)+i ln

(
1− t

t[1− tz(p)]

)
and

z(p) =
p2

1 + p2
, s =

t(1− t)z(p)

1− tz(p)
.
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Vacuum polarization

Q3(b) =

∫ ∞
0

dp

−1

2

[√
1 + (bp)2 − 1− (bp)2

2

] 1− p arctan
(

1
p

)
p2

×

×
∫ 1

0

dt

t(1− t)

s(1 + s) ln(s)

1− s
+

[
[1 + (bp)2]3/2

b2
− 1

b2
− 3

2
p2 − 3

8
b2p4

]
×

×

−
[
2 arctan

(
1
p

)]3
− 2 arctan

(
1
p

) [
π2 − 6 dilog

(
1

p2+1

)]
12p

−

−
1
3 + 2 ln(p)

p4

]
+

[√
1 + (bp)2 − 1− (bp)2

2
−

−arctanh

(
1√

1 + (bp)2

)
− ln

(
pb

2

)
+

(pb)2

4

]
×
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Vacuum polarization

×


[
2 arctan

(
1
p

)]2

2
−
π2 − 6 dilog

(
1

p2+1

)
6

− 1− 2 ln(p)

p2

+

+

[
1√

1 + (bp)2
− 1 +

(bp)2

2

]
×

×

−∫ 1
0

dt
t(1−t) (1− s) [ln(1− s) ln(s) + dilog(1− s)]

4p2
+
ζ(3)

p2

+

+

[
arctanh

(
1√

1 + (bp)2

)
+ ln

(
pb

2

)
− (pb)2

4

]
×

×


[
2 arctan

(
1
p

)]2
ln(1 + p2)−

∫ 1
0

dt
t(1−t)s ln2

(
1−t

t[1−tz(p)]

)
4p2

+
ζ(3)

p2


 .
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Vacuum polarization

The ultraviolet divergences are proportional to linear term in
b.

The whole expression diverges at b = 0.

If everything up to linear term in b is removed then for

ordinary hydrogen we get precisely the result of Wichmann and
Kroll
muonic hydrogen we get
(∆E )WK (2p)− (∆E )WK (2s) ' −0.10158 10−5eV
J. Zamastil, D. Šimsa, Ann. Phys. 379, 131 (2017)
which differs by 1% from the result −0.103 10−5eV
E. Borie, Ann. Phys. (NY) 327, 733 (2012)
S. G. Karshenboim et al, Phys. Rev. A 81, 060501(R) (2010).

According to the standard view the charge can be
renormalized at any value of momentum transfer b

Here, it has to be renormalized at zero momentum transfer
b = 0.
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Conlusions

The radius proton puzzle is not influenced by the uncertainity of
the one-loop QED corrections.
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